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ABSTRACT

Continuous slowing down theory is applied to the generation of elas-

tic transfer matrices at the broad group level. When incorporated into a

standard processing code, substantial savings in time were achieved while

retaining acceptable accuracy.
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Calculation of elastic transfer matrices can be a time-consuming compo-

nent of processing nuclear data to obtain multigroup constants.  In an attempt

to reduce computing costs, we attempted to find an alternate calculational

procedure which is inexpensive, reasonably accurate, and easily implemented.

The three objectives were realized through use of continuous slowing down

theory. Other approaches  to this problem  also  have been suggested  (1) ·

Let us consider first why the problem of time-consumption arises. Elastic

transfer cross-sections involve integrals of the general form (2)
t<

lk'*-1          C

Ik, f.1.'fal' 1,(-') i  D...tu)1(- d-A) I r      E k. (4 6.1  PR,  C  t  (U )1             (1)<LU /     12'= 0

In Equation 1, the k-index denotes the Legendre moment in the laboratory system,

and the k' index is used for the summation of center-of-mass system components

of the cross-section. Evaluation of Equation 1 can be time-consuming because

the Legendre moments  Pk( »- ) are rapidly fluctuating functions. The scattering

angle cosines in laboratory and center of mass fo and /fc both are functions of
the lethargy change U.

The expense associated with Equation 1 is compounded by the number of in-

tegrals to be evaluated. Suppose, for example, that one is dealing with about

3 ,·roups and P8 scattering, and that scattering to only one lower group is

p,ssible.     We  thus  have to perform about four hundred fifty double integrals.

Each integral would involve a considerable number of operations because of the

large number of integration points and the summation within the integral.

To see how continuous slowing down theory can help the situation, let us

first consider the case in which downscatter to only one group is  permitted.

If one takes Taylor expansions for collision density terms within integrands,
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and retains only the leading terms, the slowing down density for the kth

Legendre moment is (2)

L      -C

&4(111=  I    t,e gs &2,  c'.1,3,  **lub)                                                                              (2)
k&#

where slowing down parameters are defined for the various Legendre moments

(3)

S       ,   451'   C. i?.  It e. i]   U (p.) P,  CA«) 3/L'.
k¥L' AJ12-.

Since all neutrons slowing down past a group boundary enter the next group, the

removal cross-section can be related to the slowing down density by

Ikt":1 = qi:-9..4 1 4                                          (4)
From the above, the removal cross-section is given by

K
O-3= +1 -

(1) 1,   Cuj  )                          
                                    r    

                                         
                                         

                      (5)

12
-

472      -        2               f * &.    Gs;      c„ 3  )
460

The numerical gain in using Equation 5 is clear. ·First, the only single

integral involved is  f  .which is independent of group, and the integration
ka'

work is insensitive to the number of groups. This is in contrast to the large

number of double ihtegrals normally required.  The ratio of the flux at the bot-

;·   . . .    I b e  gi·oup  to the total group flux would be obtained easily  from the weight-

ing spectrum used.

The in-group scattering cross-section can be obtained in terms of Equation

5 and the total scattering cross-section, which is given by

r us -C

     '        It,      1             .1-   6.l t•- 1     5      -Ti e.   1.,
lu 1                       (6)

k '174
3-'
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Ith.'             Z

f '  J,„ Td-  Ip·  (p.) 311,  c.,4,)                                  (7,-/

The in-group scattering is given by

4 -5 9+ 1g-3443=  -9 _   d  4                                         (81
k    St   k

The above procedure was incorporated into the SUPERTOG code (3) to replace

the existing elastic transfer calculation. Overall code running time was re-

duced by about a factor of eight for the problems considered. In essence, a

transition was achieved from a situation where running time was determined by

elastic matrices to a situation where running time was determined by other as-

pects of cross-section processing.  Some results are shown in Table I at  high

energy where several orders of anisotropy are substantial.  Results here and in

the other applications we have considered are acceptable in accuracy, while being

achieved at a substantial saving in computer time.

The limitation to single group downscatter is applicable to many realistic

situations  and is present in commonly used calculations  (4) . However, it would

be desirable to remove this limitation if possible. The difficulty with apply-

** ,' · .,ritit·luous slowing down theory to multigroup transfer is that continuous

:.w-i rJ€ down concepts generally are associated with a single lethargy or energy.

Thus, the slowing down density past a given lethargy could be translated into

a removal cross-section as long as it is known that downscatter to only one group

is possible.

To circumvent this difficulty, we shall make use of the techniques utilized

in deriving continuous slowing down theory, rather than the currently used con-

cepts. In particular, we shall make use of Taylor series expansions of collision

:
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densities in the integrals for the group constants.

Let us consider a situation where scattering down to two groups is possi-

ble. The two-group transfer cross-section is

34 3¥2       ,        r  U.'5       (4-0,6

i            =       t,    J       d.,1
I

..1- dts. ) 4 (...1  P«  ,( ,'11 .2 9, g  9,2,P,1»41 (9)0-U.

1 JU) 12. S 4'       11

12:   ut - G  'll
1+'        3 +,

E = ln 
(10)

Now consider Taylor expansions of the form

Ot, Ic.2)     0'.C.,   1=OS<",1)    4,2(«s)  014,-"I,f.    IT,lus'  1,(«j)]  4    ...                          (11)
3

To date, only the first term in the expansion, analogous to the Fermi age ap-

proximation, has been considered.  Equation 9 then becomes

0-1"fr-1   (1 kG•,1   ';    2  ti.,                  ,.,       c

...,
»,    (12)

-

G-'.c.-1)   d": 1  42  P6F,(u)]11, A(u)]  t- 30/
12                      (te    S„     2       5 1'      0    .3.; 6     '.3-

Equation 12 can be expressed in a manner analogous to that of Equation 5

St<,-r-             0 'c-"          I i (r         (u      J                                                                                                       (1 3)

Mi
3-**5+2            C

-

4,1
br<=0

k 4' Sk,   j,

j-43  +2            a    /             /. il8 u'+ 4

*    '       361  1         x      -Figd.  colliarIA'u)]  [-  tl]
F 2        -       -3        J

°» (14)

U - € 10
30'                       84'

If the group widths are uniform, we again have a situation where the integrations

are performed once and then used for all groups.  Note that the approach yields
r g-,g+2

slowing down parameters
1

associated with transfer to particular lethargy

k k'
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ranges rather than total slowing down parameters as usually encountered in

continuous slowing down theory.

Equation 14 as written is a double integral, which makes it less conven-

ient to evaluate than Equation 3, a single integral.  However, Equation 14 can

be  converted to a single integral by a simple procedure  (5) .    Note that  all

terms in the integrand are functions of the lethargy change U.  Denoting the

integrand by -f(U) for simplicity, it is logical to change variables to obtain

4'   C G£4/+ E

F 3-1.t  113 J....  r     d»'  f
(1) .1 ts-/1

d L)  4 (U)                                                        C 15 )

11": J t]/ E u. u  -41J.'  Ul'- 6 3/,
Reversing the order of integration leads to

5 43*1             €                                            u

S      = 1 JU ((U ) 1-,- ul„'                                (16)84. t. 4./

(17)
4  =a  - u

3     5+,

The integral over u' can be performed analytically, yielding

I-1-1"  «1' C.lu<u-titot(u)lp..it(u)] C- tabu)        ci' 
'. 02

Jaj
- 4

Equation 18 can be converted to an integral over center of mass angle, analogous

to Equation 3,

r 9  '>5+2 r/kc (59)
46**,   C5= - -st,l, Ipt,4,1-1111 110'.   (,fl,J  e,  (,.)               (19,

12 Ii' a  J
-,

B tA ) =    I-  (Al_Ll' (i-  e- AS j                                                   (20)
C.

5 24
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Analogous expressions can be derived directly for downscattering one

group. On the other hand, one can infer the one-group downscatter from the to-

tal slowing down density and the two group downscatter.

0,                      411,3.,1 16   3-'*5*'

G--9  3*1  4 9 i (f   - il-,  )
ts<.31 ,  ( : .      l.        1           0- c  'i 14   )(21)

12    5              *PJ 41- Stz. J'-'
--4       9   rt i

A              1260      4 11,         12 4,                                                                 4

Two terms have to be subtracted. One is due to the fact that two group scatter-

ing from group "g" is possible. The second is due to the fact the slowing down

density at
lethargy u  has

a contribution from group  "g-1. "

In single group transfer, only one set of integrals independent of group

had to be evaluated.  Equation 19 for two-group transfer obviously has to depend

on the width of the intervening group. However, it should not be necessary to

increase significantly the integration effort.  Equation 19 may be written as

3*fj-,  r Ma (AC.1
r)uc (AS) fAr (22)

i             =    1              ·f».   4 ,  c " '  ,   -  Lij
J

:lk    C  C .11  j  =     2, -0 0   1 2
12 12'

/C /
-, -1

Suppose there are N group widths of interest. One then can write, for example,

(Pc (43 c K   (,15 .1 r 1.. ft  ,  10   .)
j i,   f (,t   1 + 1 cl 4   1  (..A,   1.¥  . . . 4 p Jpt   f (Ki, (23)

L...'C  1. <, C
l

J,t (41 O_ ,1
JP.   (As '   J                                                                                                     ..,

or, symbollically

(24)
-' - lk.

-1-I
1                         -4

1 2 I, +  -,            -,f    +.,-

Thus, substantial duplication of calculational effort is not necessary to deal

with non-uniform group structure. Extension to three or more group transfer is

straightforward.
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In our own application of this procedure we permit two group sizes, one

for which two-group downscatter is possible, and one for which one-group down-

scatter only is possible. This is in keeping with analysis of fast spectrum

measurements at RPI. Incorporation of the technique into SUPERTOG again led to

a gain of a factor of about eight in overall running time of the cod6.  Some

sample results are given in Table 2.  Again, reasonable accuracy has been ob-

tained.

It should be noted that this approach is particularly attractive in connec-

tion with parametric generation of elastic matrices in terms of background cross-

sections  (4) ·   In  such parametric generation,  one is interested in scalar weight-

ing spectra of the form

\ -

(25)4  (a) =      27
6              Ot< (U.I)  + 0- 

Equation 5 would become, for example,

\d

1=»  3 +3 -1- F g ----. c (26)

(F            ((3- j   _ -aisft ,40-0 ,   F    U     C .4. '1- 4-

0   1       -          -     C    't 44 462.-                  12 i                LO *             S  k.                      3-0

J " 5 -:          01.   C C.:1     +  SI'
Note that the summation over the k' index does not involve the background cross-

section.  ·The obly integral to be evaluated for each case is the group flux

41 ,      .,
6.

··--                                                                                                                                   (27)
o       u     Cr  u.\ + Cr

5-'        tx l     1              0

Henryson (5) has obtained similar expressions to ours for downscatter cross-

sections, though his motivation, assumptions, and application differ from ours.

He was concerned with reliably obtaining .elastic transfer cross sections on an

ultra-fine level (group lethargy width of 1/120) for heavy elements, such asn

uranium. He assumed that for groups so narrow, the cross-sections and flux in
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(for example) Equation 9 could be replaced by the average values of these quan-

tities for the group.  He thus obtains the same integrals to evaluate as ob-

tained above, but his coefficients will differ if the average values of cross-

sections and weighting spectra di ffer from values at the bottoms of groups.

Our concern has been with fairly broad groups (group lethargy widths of 1/8

and 1/4) for direct input into transport or diffusion calculation, and with

light and intermediate mass materials in addition to heavy materialb.

In summary, a rapid and easily implemented procedure has been formulated

i for generating elastic matrices.  The procedure has been incorporated into a

standard cross-section processing code, leading to a substantial saving of run-

ning timeiwith retention of acceptable accuracy.
i         y

.
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TABLE 1

Comparison of New and Standard Group Constants from SUPERTOG for Elastic
Scattering from Group 4·(5.35-6.87 MeV, Au=.125) using ENDF/B-I Iron Data

6-                                          6-4-* 4 42.5
Legendre Legendre
Moment       '1. W Standard Moment New Standard.-,-

0 2.37 2.37              0 .133 .132

1 1.81 1.81              1 .0253 .0248

2 1.34 1.34              2 .0131 .0133

3 .934 ·938             3 .00901 .00856

4 .556 .557             4 -.00729 -.00684

5 .287 .288             5 -·00118 -.00110

6 .141 .141             6 -.00438 -.00468

7 .0673 .0692            7 -.000962 -.00115

8 .0275 .0296            8 -.00177 -.00159

.
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"      '              TABLE 2

Selected Isotropic Elastic Group Constants for Sodium (Au=.125)

Fast CSD Method Standard SUPERTOG

6-47 ->47 1.89 1.88

Cr 47+ 48 2.89 2.90

T 47->49 .28 .28
\

'g- 46+46 1.82 1.81

Cr 46--*47 2.78 2.80

Or 46-*48 .27 .26

i'       r 45-b45 1.75 1.75

0- 45-*46 2.71 2.72

0- 45-*47 .26 .26

0-   44->44                                     · 1.7 1 1.70

O- 44-'=45 2.64 2.65

44=546 .26 .25
0-

A -» . , '


